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J.  Phys. A :  Math. Gen. 14 (1981) 883-900. Printed in Great Britain 

Thermodynamics of 1D soliton-bearing Hamiltonians: 
Transfer integral structure and correlation functions 

A R Bishop 
Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los 
Alamos, New Mexico 87545, USA 

Received 24 June 1980, in Snal form 17 September 1980 

Abstract. Static correlation functions for the sine-Gordon chain and related one-dimen- 
sional models are described in terms of the transfer integral operator formalism. The 
characteristic signatures of kink-solitons within this formalism are discussed and classes of 
‘kink-sensitive’ and ‘kink-insensitive’ correlations are emphasised. Special attention is 
given to the integrated structure factor j S ( q ,  w )  dw and the consistency of several cal- 
culations and models of S(q ,  w j  is addressed. Possible applications to the interpretation of 
scattering experiments in quasi-one-dimensional ferro- and antiferromagnetic materials 
such as CsNiF, and (CD3),NMnC13 are discussed. 

1. Introduction 

There has recently been renewed discussion of the thermodynamics of the classical (e.g. 
Mikeska 1978, 1980, Bishop 1979, Stoll et al 1979, Schneider et a1 1979, JbsC and 
Sakni 1979, Leung et a1 1980, Maki 1981) and quantum (Maki and Takayama 1979, 
1980) sine-Gordon (hereafter SG) chain, primarily stimulated by interest in certain 
quasi-one-dimensional ferro- and antiferromagnetic easy-plane Heisenberg systems 
such as CsNiF3 (Kjems and Steiner 1978) or (CD&NMnC13 (TMMC hereafter) 
(Boucher et a1 1980), for which intriguing neutron scattering data have been obtained. 
The SG Hamiltonian is 

where h sets the energy scale, 1 is the lattice spacing with lattice index i, and co and W O  

are the characteristic velocity and frequency respectively. The equation of motion for 
the field variable 4 ( x ,  t ) ,  in the continuum limit c o / w o  >> I ,  is the SG equation 

(2) 
It is still too early to know, experimentally or theoretically, how useful a continuous 

classical spin-field SG description is for the actual magnetic materials. Theoretically, 
questions remain about the quantum effects (Mikeska and Patzak 1977, Bishop 1980a) 
associated with the finite spin, especially in CsNiF3 where S = 1 ; the crossover to strong 
spin motions out of the easy plane as the temperature is raised must be considered more 
carefully (Bishop 1980b); other central peak contributions (besides those attributed to 
non-linear excitations (Mikeska 1978,1980, Stoll et ai 1979, Schneider et a1 1979) (see 
8 3)) must be examined (e.g. Malinowski and Kocinski 1972); the effect on e.g. 

2 6 - ~$4~. + W O  sin 4 = 0.  
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domain-wall dynamics of demagnetising fields has yet to be assessed in anisotropic 
materials?, etc. Traditionally (e.g. Loveluck et a1 1975) classical statistical mechanics 
for e.g. CsNiF3 has introduced the discrete chain explicitly and the full (classical) 
coupling S, - The reduction to continuum SG recently emphasised (Mikeska 1978) 
assumes a slowly-varying spin direction from site to site, and is only valid at low T 
(where topological constraints are weak (JosC and Sahni 1979) (cf lessons from 2D spin 
systems (JosC et a1 1977)) and domain walls wide compared with a lattice spacing), and 
at long wavelengths. These questions have been examined in some generality in 1D by 
Patk6s and Rujin (1979) (see also Schneider et a1 1979, JosC and Sahni 1979, 
Riseborough and Trullinger 1980). 

In view of such open questions, the present contribution is not placed in the detailed 
context of a particular magnetic chain. Rather we shall (in common with most current 
literature) assume the basic validity of the SG description and discuss deductions which 
then follow. The greatest theoretical and experimental interest certainly lies in the 
structure observed (Kjems and Steiner 1978, Boucher et a1 1980) in the dynamic 
structure factor S(q, w ) ,  and in particular mechanisms for the ‘central peak’ (i.e. weight 
in S ( q ,  w )  at frequencies w 2: 0) .  Attention has been focused on scattering from ‘gases’ 
of ‘particle-like’ solutions to the SG equation ( l ) ,  and both ‘kink-solitons’ (domain 
walls) (Mikeska 1978) and ‘breathers’ (soliton-antisoliton or multi-magnon bound 
states) (Stoll et a1 1979, Schneider et a1 1979) have been suggested for this role. All 
present calculations for S(q, w )  (e.g. Krumhansl and Schrieffer 1975, Aubry 1976, 
Kawasaki 1976, Varma 1976, Mikeska 1978, Stoll et a1 1979, Sahni and Mazenko 
1979, Theodorakopoulos 1979, Bennett et a1 1980) (see also § 3) have limitations on 
their validity or applicability in strongly non-linear systems such as SG. Accurate 
molecular dynamics simulations are undoubtedly the most useful guides (Stoll et a1 
1979, Schneider e ta l  1979, Kerr etal 1980), although these still have to be interpreted 
if we wish to think in terms of contributions from ‘elementary’ modes. 

The only truly exact information on the statistical mechanics of the SG chain is 
available for static (including q-dependent) properties. Here the transfer integral 
operator technique (e.g. Scalapino et a1 1972) can be employed to yield exact expres- 
sions (see below), which must then be evaluated numerically in general: at low T some 
analytic expansions are possible (see below) as they are at high T. Such accurate static 
data (e.g. for CsNiF3) as have been carefully compared with transfer integral operator 
results (e.g. magnetisation (Schneider et a1 1979)) suggest that linearisation in motions 
out of the easy plane might be reasonable at low enough T for typical experimental 
parameter ranges (Kjems and Steiner 1978, Kakurai et a1 1980), and indeed that the 
simple SG description (l), (2) is itself then quite reasonably valid (see also Patk6s and 
Rujan 1979 and 5 2.1) if trivial discrete-lattice corrections are included for short 
wavelengths. 

Many more comparisons of static properties (e.g. of specific heat or dwS(q, w ) )  are 
needed to clarify the limitations of the SG description in real materials, but evidence for 
quasi-elementary excitations is anyway difficult to disentangle. Carefully chosen 
dynamic properties are much more important in this respect but one interim static 
property which can provide more information than most is doS(q, w ; T ) ,  to be studied 
as a function of T (and q where this is experimentally possible) (e.g. Kakurai et a1 1980). 
These correlation functions cannot yield any information on how weight is distributed 
in frequency. Nevertheless, they are weak constraints on theoretical proposals for 
t Conventionally, for isotropic magnets, these only modify the effective mass of (low-velocity) walls (e.g. 
Winter 1961). 
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S(4 ,  w )  and also some degree of elementary mode interpretation has been developed 
(Currie et a1 1980) (at least for kBT50 .15EK (Bishop 1979), where EK is the 
kink-soliton creation energy). Various suggestions for S ( q ,  w )  are summarised 
in § 3. 

5 dwS(q, w ; T )  which we wish to emphasise in this work. 
The points made below are intentionally slightly technical, because these do not seem 
to have been fully appreciated in the literature and yet they do contain lessons for the 
interpretation of S ( q , w )  (cf Bishop 1978). Technical details are presented in the 
Appendix. In § 2 we draw together salient results from existing literature, add a few 
new ones, and suggest interpretations emphasising the sensitivity on which function of 
the field is being examined for correlations. Concentrating on SG,  we use correlations 
for cos $4 and cos to illustrate the two most important classes-where, respectively, 
kink-solitons are and are not dominant. In the first class there is an unambiguous 
correlation length given by the inverse mean kink separation and modes other than 
kinks have a weak effect even though they are more populated thermally. In the second 
class correlations occur on the scale of a kink width (=2c0/w0)  and 'anharmonic 
phonon' modes (including breathers (Stoll et a1 1979)) are much more important than 
kinks. Correlations of other SG field ( 4 )  functions (4, sin 4, sin $4)  are mentioned 
briefly as appropriate, and contrasting applications to the magnetic chains CsNiF3 and 
TMMC are also noted as topical illustrations ( Q  3). 

It is the quantity F (q  ; T )  

2. Transfer integral results for static correlations 

2.1. Formalism 

The transfer integral operator formalism is well documented as a means of studying the 
equilibrium statistical mechanics of 1D Hamiltonians such as (1) (e.g. Scalapino et a1 
1972, Krumhansl and Schrieffer 1975, Currie et a1 1980). The central component in 
this approach is the 'transfer integral operator' (TIO) eigenvalue problem: 

+CO 

--CO c d4l exP[-Plhw;f(dC+l, 41)14n(41) = exP(-P1ho;€,)4,(4,+1) (3) 

with the symmetrised function 

f(4l+l, 41) = t ( C ; / W ; 1 2 ) ( 4 1 + 1  - 4Y + 1 -$(cos 41+1 +cos 4,). 
Our remarks below are qualitatively quite general, but much attention has been 

focused quantitatively on the continuum (or 'displacive') limit of slowly varying fields 
(d = co /wo  >> 1). In this case a differential approximation is valid (to O ( l / d ) )  in place of 
equation (3): 

[-(1/2m")(d2/d42)+ 1 -cos 4 + v0llCln(4) = en$n(4 )  (4) 
where 

lCln ( 4 )  = exp[-(l/ 1 6 d ) P E ~ ( 1 -  COS (6)lh ( 4 )  
m" = h WOCOP = (QPEK)' 

Vo = (2Pw ;1h)-' In( hc ;p/2 d). 

2 2 2  2 

In this limit, we see that we have to study a pseudo-Schrodinger equation (4) for a 
particle of 'mass' m" moving in the periodic potential (1 -cos 4) .  In fact this eigenvalue 
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problem is easily mapped into the Mathieu equation (e.g. Currie et al 1980; Appendix) 
whose eigenstructure has been studied in detail (Abramowitz and Stegun 1970, see also 
Appendix). In view of the SG potential’s periodicity (or the equivalent Mathieu 
equation) equation (4) poses a 1D ‘band-structure’ problem. We can iabel eigenvalues 
(in a reduced zone scheme) by 6,,k with band index n(=O, 1,2,  . . .) and a wavevector k 
in the first Brillouin zone ( -  < k i i). From Floquet’s theorem the corresponding 
eigenfunctions will then have Blochform I,b,,k(d) = exp(ikd)un,k(qb) with & k ( d  + 2 ~ )  = 
u,,k((b). The eigenstructure comprises a sequence of continuous bands. At low T (i.e. 
m*>> 1) the bands are narrow compared with the band gaps (i.e. ‘tight-binding’) 
whereas high T corresponds to the opposite ‘free electron’ situation. The ‘charac- 
teristic’ eigenfunctions at the top or bottom of bands form sequences of 2 ~ -  and 
4r-periodic even and odd functions. 

Note that the eigenfunctions {&} in equation (3) form a complete orthogonal set on 
the interval (-00, +CO), for which all the ‘band structure’ functions are necessary. This 
is appropriate when the SG variable 4 can physically range over (-00, a), as when it 
describes a generalised position variable for instance (e.g. in a generalised dislocation 
context, cf Rice et a1 1976). We should contrast this with spin problems where 
physically indistinct states are recovered by {d I }  + {I$( + 277). This periodicity is explicit 
in the spin coupling C O S ( C $ , + ~  - dI ) ,  to which the gradient coupling of literal SG (1) is only 
an approximation. The 277-periodic spin coupling form is still only nearest-neighbour, 
so that the TIO approach remains available (e.g. Loveluck et a1 1975). Reduction to the 
literal SG form (4) has been analysed in detail by Patkos and R u j h  (1979) (see also 
Riseborough and Trullinger 1980). This reduction requires slowly-varying spins 
( c o l W O  >> 1 in the SG approximation) and low T (<< JS2,  with J the exchange coupling 
constant and S the spin magnitude). Most important, however, is the necessary 
restriction of the TIO (3) or (4) to the range (-T, 77) rather than (-00, 00). This means 
that when we are allowed to use the SG approximation (with thermal renormalisation of 
J if necessary (Riseborough and Trullinger 1980)) we must only use 2r-periodic 
Mathieu functions and not the whole band structure. While we frame our remarks 
below in terms of the more generally useful literal SG equation, we have in mind the 
above restrictions for applications to e.g. spin chains such as CsNiF3 (Mikeska 1978) or 
TMMC (Mikeska 1980). (It may be helpful to note that similar remarks apply to 2D X Y  
spin models. There also, derivative approximation of the exchange spin coupling is 
reasonable at low T. However, full treatment of the periodicity at higher T is not 
merely a quantitative correction (as in 1D) but essential to the description of vortex 
configurations leading to the qualitatively new feature of a topological phase transition 
(Kosterlitz and Thouless 1973, JosC et a1 1977)). 

The transfer operator formalism allows us to evaluate any static correlation 
function, In particular for any function A(C$(x, t ) )  the intermediate scattering function 
FA(q,  t )  can be evaluated at t = 0: 

Equivalently, the self-correlation function CA(x)  is expressed as 

C A b )  = (A[4(x, 0)1A*[4(O, 011) = 

i m  

exp(-iqx)FA(q) dx 
-m 
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We frequently consider instead the correlation function C A ( x )  restricted to fluctua- 
tions: 

C”(X) = ( [ A ( x )  - (A)][A(O) -(A)]) = CA(x)  - \Mi? 1 2 .  (7) 

Mn = (OlA(4)ln), (8) 

In these expressions M,, denotes the matrix element 

where lm) is an eigenfunction of the transfer integral operator (3). The corresponding 
An’s,  on the other hand, are determined by the eigenualues: 

A,’(T)=hpw;(~, - E O ) .  (9) 

In = 0) is the lowest energy eigenfunction, and In) (n = 1,2,3,  . . .) is the sequence of 
eigenfunctions for which the corresponding matrix element M,, is non-zero : this 
sequence depends, of course, on the particular filnction A.  We also note a simple sum 
rule on matrix elements: 

m 

C*(X = 0) = M$’ (T) = 1 lMA(T)12. 
n =o 

Here M t 2  = (O/A2(4)10). 

2.2. Examples 

We now wish to consider the implications of the formalism of § 2.1 for the particular 
cases of SG with A ( 4 )  = cos $4 and A =cos 4. These are quite different for transparent 
physical reasons and this is also evident from the above formalism. 

Consider first the simplest case of A ( 4 )  = cos $4, which is in fact very similar to the 
often-quoted results of Krumhansl and Schrieffer (1975) or Aubry (1974,76). These 
authors considered the 1D ‘4-four’ model rather than SG.  In that case 1 -cos 4 in 
equation (1) is replaced by (4’-  1)2, and Krumhansl and Schrieffer (1975) only 
considered correlations of the order parameter 4 itself. Returning to A ( 4 )  = cos $4 for 
SG we see on simple symmetry grounds (equivalent to Bragg selection rules using band 
structure terminology (Currie et al 1980)) that despite the continuous eigenspectrum 
(for literal SG (2)) of the TIO only a discrete set of eigenstates are coupled to the ground 
state (n = 0). Most importantly, the first coupled state (n = 1) is at the top of the first 
band. Thus A 1  is dominated by tunnel splitting which determines the band width 
whereas A, (n 3 2) are controlled by band gaps. At low T, asymptotic expansions are 
available (see Abramowitz and Stegun 1970), both for eigenvalues and eigenfunctions 
of the Mathieu equation. We give examples of the less familiar matrix element 
evaluations in the Appendix. The relevant conclusions are 

( I l a )  M y 2  = 0 

A I  > > A n 2 2 =  (dln)[l+O(exP(-EKlkBT), (~BT/EK))I. (114 

Considering equations (6) and ( l l c ,  d) we see that at sufficiently large x (>>Al(T)), or 
q << A (T),  the first term in the expansion is dominant. Thus the kink-soliton creation 
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energy E K  enters directly through the eigenvalues and Al(T) defines an unambiguous 
correlation length. Indeed ( l l c )  can be re-expressed as (e.g. Koehler et a1 1975) 

where (nK(T))  is the mean density of kinks (plus anti-kinks). Result (12) is exact at low 
T but probkbly extends accurately to much higher T (Koehler etal 1975, Bishop 1979). 
It has a simple physical interpretation analogous to correlations in the 1D Ising model 
(Aubry 1974, 1976, Krumhansl and Schrieffer 1975): The function A ( 4 )  =cos $4 
changes value asymptotically from f a  ( T )  to F a  ( T )  as a kink passes (with a ( T )  + 1, as 
T+O+). We consider a gas of independent kinks with a Poisson distribution for 
separations (see also Bennett et al 1980). Then if NK(x) is the number of kinks in the 
interval x, a simple calculation shows 

c ( X )  = UZ(T)((-l)NK‘”’) = U’(T) eXp(-X/AK) (13) 

AK(T) (2(nK(T)))-’* (14) 
with 

A K  thus agrees with A I  (equation (12)). In this case harmonic and anharmonic modes 
play quite weak roles (at low T and large x). They act to dress the kinks and thereby 
affect the kink energy and the correlation length; otherwise they only describe the field 
oscillations around the SG potential degenerate minima (4 = 0,2.ir, . . .) and thereby 
reduce the magnitude of correlations (not the correlation length). 

Turning to A(q5) = cos 4, we note immediately that kink-solitons cannot play any 
Ising-like role, since the asymptotic value of A(q5) is now unchanged by the passage of a 
kink, Kink effects can thus only occur on the local scale of a kink width 2d = 2co/wO 
(and a Bragg peak from the ordered regions is expected). However, the kink density is 
exponentially small (at low T )  so that correlations from smaller amplitude but more 
highly populated phonon (and anharmonic phonon) modes become essential. This 
behaviour follows in the TIO because now the lowest different state ( n  = 1) coupled to 
the ground state ( n  = 0) is not in the lowest band. Thus exponential tunnel splitting, i.e. 
bandwidths (which carry the kink density information in the eigenvalues), is masked by 
the band gaps ( CC kgT/EK). Using asymptotic low-7’ expansions for Mathieu eigen- 
functions and eigenvalues (Abramowitz and Stegun 1970; see Appendix) we find 

A,(T) = d/n +O(dkBT/EK), O(d exP(-@K)) 

IMF‘ (TI]’ = o ( k B   TIE,)^ + o ( d n ~ ( T ) ~ K / k g T ) ,  O(dnK(T)) 

(15) 

(16a) 

(16b) 

IMFs ( T )  1’ = 1 - 4 kg T / E K  + o( kg T / E K ) ’  - 4 d n ~ (  T )  -k 0 (dnK( T )  kg T / E K )  

lkf;:~ (T)1*=O(kBT/EK)’fO(dnK(T)EK/kgT),  O(dnK(T)) .  ( 1 6 ~ )  
In addition 

M y ’  = 1 - 4 k g T / E ~ +  O ( k B T / E ~ ) * +  2dnK(T) 4- O(dnK(T)kgT/EK). (17) 

Not all coefficients in equations (16) and (17) and similar matrix expressions should be 
considered exact (see Appendix)-our main point here is to emphasise orders in 
kgT/EK and nKd.  In particular, where orders have been indicated in equations (15), 
(16) and (17), numerical coefficients can only be estimated crudely with the usual 
Mathieu function expansion techniques (cf Appendix), and we have therefore omitted 
these. 
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The terms in (16a) correspond to the anticipated Bragg peak (see equation ( 5 ) )  with 
weight depleted due to both phonon (and anharmonic phonon) and soliton excitations. 
Notice from equations (16a) and (17) that the sum rule (10) is satisfied to the orders 
reported. Although the Bragg peak loses weight of linear phonon order (~BT/EK) the 
‘phonon’ contributions to ~ ( q  tt 0 )  are O(kBT/EK)’-the absence of terms of linear 
order (see Appendix) is physically important (see below). In addition there are terms of 
the order of the soliton density whose contribution is very weak compared with those of 
the anharmonic phonons, especially for kBT<< E K .  It is important to realise that the 
soliton activation energy does not occur through the eigenvalues as for A = cos $4 
(above), but instead through the eigenfunctions (matrix elements). Furthermore, 
although one term in the sum ( 5 )  is sufficient for A = cos $4, this is quite inadequate for 
A = cos 4. In the latter case the series ( 5 )  are probably asymptotic and at best slowly 
convergent: many correlation lengths -d (equation (15)) need to be included both for 
the anharmonic phonon and soliton order contributions-depending on the quan- 
titative accuracy desired (cf Scalapino et a1 1972). These sums are not practicable using 
conventional Mathieu expansions (Appendix), and low-order terminations are 
generally inadequate. One very elegant procedure for summing the infinite series has 
been introduced by Apel et a1 (1979) generalising techniques of Edwards and Lenard 
(1962). In conjunction with equations (9, (15) and (16), we can interpret these works 
to imply that the series of terms of O(dnKEK/kBT) (equation (16)) exactly cancel. The 
terms of O(dnK( T)) therefore dominate the soliton order terms. When multiplied by 
their corresponding Lorentzians (equation ( 5 ) ) ,  the terms in this infinite series sum to 
produce a q dependence specifically characterising the soliton profile. In fact at low T 
(PEK b 6) this portion of the integrated intensity is entirely consistent (Apel et a1 1979) 
with a simple ideal soliton gas phenomenology (e.g. Mikeska 1978) (see equation (24) 
below), although that cannot itself be considered strong support for specific dynamics. 

All of the above remarks for A = cos 4 generalise equally well (with changes of 
coefficients only) to e.g. A = 4 2  in the 4-four model, and all similar ‘kink-insensitive’ 
correlations in a general class of models (e.g. Currie et a1 1980). 

It may help to reinforce the fundamental differences between the correlations of 
A ( 4 )  = cos 4 and cos $4 by considering the different ways that the same Bragg peak 
evolves in the two cases as T -+ 0’. This is summarised schematically in figure 1. In the 
‘kink-insensitive’ case A(q5) = cos q5 there is an incomplete Bragg peak plus a dis- 
tribution of weight in q space characterised by the squared Fourier transform of the 
kink profile, that is ( 2 ~ q d ~ / s i n h ( ~ q d / 2 ) ) ~  (Mikeska 1978; Bishop 1981; see also 
equation (21)). The weight in the latter component approaches zero -(kBT/EK)2 as 
T + O’, and all weight transfers to the Bragg peak in this limit. (NB If we consider the 
fluctuation correlation function (equation (9)) then there is no Bragg peak and 8 + 0 
as T+O). The kink-sensitive case A(q!~)=cos;g is quite different. Here there 
is no Bragg peak for T Z O ,  but rather a narrow (width -d-’(EK/kBT)’’* 
x exp(-EK/kBT)) and large amplitude ( - ~ ( / C ~ T / E ~ ) ’ ’ ~  exp(-EK/kBT)) struc- 
ture at small q, which merges with the A ( 4 )  = cos 4 result at larger q. Of course the 
same Bragg peak emerges in both cases as T + 0’. 

3. Dynamic correlations and easy-plane magnetic chains 

We now comment on the consistency of various theories for dynamic correlation 
functions S ( q ,  U ) .  Integrated intensities 5 dwS(q, w )  contain limited information and 
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t 

4 ColWO 

Figure 1. The integrated structure factors (schematic), F ( y )  = j  dwS(q, w ) ,  for self cor- 
relations of cos 4 (full curve) and cos $4 (broken curve), illustrating the contrasting ways in 
which a complete Bragg peak (/ / / / /) emerges as T + O+ (see 0 2). 

have to be interpreted carefully, as we suggest below. Nevertheless, the transfer 
integral results are constraints which need to be satisfied. The case A(q5) = cos iq5 for a 
2~-periodic  SG model is essentially equivalent at low T to q5 correlations in the 4-four 
model. The latter example has been considered approximately in a Hamiltonian 
framework+ by e.g. Krumhansl and Schrieffer (1975), and in a non-linear mode-mode 
coupling theory by Sahni and Mazenko (1979). These theories can always be con- 
structed to yield a non-diffusive low-frequency (‘central’) mode from kinks with 
integrated weight agreeing with equations ( 5 )  and (11): one interpolation form sugges- 
ted (Krumhansl and Schrieffer 1975, Sahni and Mazenko 1979, Mikeska 1980) is 

i.e. 

The characteristic decay time r is a(MK/kBT)”’(nK>-’, with MK the kink ‘rest’ mass 
(EK =MKc;); i.e. Tamean  kink collision time. In addition to (18a) there is weight at 
higher frequency from (anharmonic) phonon modes. These are described self consis- 
tently in the approach of Sahni and Mazenko (1979). In the transfer integral scheme we 
need to keep many orders n 3 2  in equation ( 5 )  to describe this integrated high- 
frequency response and the central (kink) weight (from n = 1) is large at small 
q s (nK(T) ) :  from equations ( 5 )  and (16) we can suppose (as is observed in molecular 

t Corresponding structure factors have also been studied approximately in a Langevin approach with 
intermediate and large (extrinsic) damping (e.g. Imada 1979). 
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dynamic simulations) that the central weight becomes small with respect to the phonon 
weight for q 3 (nK(T)) .  It is appropriate to emphasise that the form (18a) is one of 
several interpolation formulae for the dynamic structure factor where kinks control the 
order parameter profile over long distances (‘kink-sensitive functions’). Other inter- 
polation forms are possible within the same general phenomenological picture. For 
instance, Maki (1981) has’proposed instead of (1.8a) the form 

Integrating (18b) on o agrees with (18a) and the TIO result. This example illustrates the 
relative weakness of the static constraint of the mo-the q dependence of the central 
kink peaks in (18a) and (18b) are quite different for moderate q. 

Correlations of A ( 4 )  = 4 are special for bounded potentials such as in literal SG 

since 4 can vary over (-CO, +CO), so we anticipate a divergence as T+O+. These 
correlations are quite different from order parameter-order parameter correlations in 
the 4-four model which are most akin to A(4)=cos$q!~ as remarked above. In 
particular one can show (see also Schneider et a1 (1979)) 

The direct kink activation energy dependence arises in the TIO procedure because 
eigenstates within the first Mathieu band are coupled to the ground state. The 
calculation is slightly more subtle, however, because all states couple within the first 
band and must be included (for the literal SG model; see 8 2.1). Note the hydro- 
dynamic-like divergence as q + 0. Conventional hydrodynamic theory (e.g. Forster 
1975) would suggest 

with D a (T-dependent) diffusion coefficient. Expression (20) is consistent with 
expression (19) up to possible pre-exponential factors. Recently Bennett et a1 (1980) 
have made the attractive proposal that a hydrodynamic mode does indeed dominate 
long time scales for sG-like systems, and derives from the simple topological conser- 
vation of the difference between the number of kinks and anti-kinks. The consistency of 
expressions (19) and (20) is again not a severe test of specific dynamics. In particular the 
form (e.g. T dependence) of D is not constrained by (19). Bennett et a1 (1980) limit 
their derivation of the diffusion coefficient to an overdamped low-T regime with D cc T. 
The situation in the small damping or Hamiltonian limit, where (19) strictly applies, is 
less certain, depending on the particular intrinsic (mode-mode coupling) damping 
mechanisms. 

In view of recent concerns with the 1D easy-plane ferromagnet CsNiF3 in an 
easy-plane magnetic field, the case A(#J) = cos q!Jt is especially interesting. Since 257 
kinks have only a local (‘kink-insensitive’) effect in this case and (cos 4 )  is finite, the 
approach of Krumhansl, Schrieffer and others (e.g. Aubry 1976) for calculating 
dynamic correlations is considerably modified. An ideal (renormalised mass) kink gas 
approximation can nevertheless be employed (e.g. Kawasaki 1976, Mikeska 1978, 

t A ( + )  =sin q5 follows from A ( + )  = q5 in view of the equation of motion (2) (Schneider et a1 1979)-for the 
literal SG model (l), (2): the situation is different for the periodic coupling problem, cf 5 2.1 and Appendix. 



892 A R Bishop 

Bishop 1981) with the result that for low kBT (<0-15-0*2 E K )  

(21b)  
We emphasise that this result is due only to kink (and anti-kink) excitations. It predicts 
a ‘central peak’ but with different form than for A(q5) = cos $4 (equation (18)). The 
result (21a) is no more than that expected from an ideal gas of particles of finite extent. 
Comparing equation (21b) with the infinite sum of kink contributions (3, Ape1 et a1 
(1979) find that the (low T) kink statics is reproduced exactly. The success of an ideal 
kink gas approach in this sense probably has the same origin as the kink theory of 
Bennett et a1 (1980) for Sdd-namely all distributions of kink positions have equal 
probability and we have made a low-T assumption. In deriving (21a) we have omitted 
all lifetime or diffusion effects. This is reasonable at low T and q, although these 
corrections can be included (Bishop, unpublished; Theodorakopoulos 1979), giving a 
Lorentzian character to the low-T central structure rather than the pure gaussian form 
(21a). Comparisons with molecular dynamics (Stoll et  a1 1979, Kerr et a1 1980) 
support the view that a renormalised effective kink energy E K ( T )  must be used. This is 
particularly true at higher kg T(3 iEK(0))  where the pseudo-relativistic velocity 
dependence implicit in equation (2) plays a role and (together with discreteness effects) 
can lead to a splitting of the central peak (Stoll et a1 1979, Kerr et a1 1980) (for the 
nearly-integrable discrete SG model). 

The kink contributions to a central peak were emphasised by Mikeska (1978). 
However, note from the TIO result that (for A =cos 4 )  the kink contributions to 
J S(q, w )  dw are exponentially weak. Indeed the central peak weight alone observed in 
MD and experimentally is greater than can be predicted in terms of these kink effects 
(Kerr et a1 1980). As we noted, the remaining integrated weight is 0(T/EK)’ and 
dominates the exponential contribution-in fact the power series expansion is at best 
slowly convergent and higher-order powers should be included for quantitative 
accuracy-numerical evaluations are best (cf Scalapino et a1 1972). A mode inter- 
pretation of MD simulation results can be made which is consistent with these features 
(Stoll et a1 1979, Kerr et a1 1980, T Schneider and E Stoll 1980 unpublished). It is 
suggested that both multi-magnon (e.g. two-magnon) processes (D Baeriswyl 1978, G 
Reiter 1979, private communications; see also Allroth and Mikeska 1980) and anhar- 
monic magnon processes corresponding to bound magnon (i.e. breather; cf Dashen et a1 
1975) responses (Maki 1981, Bishop 1981) can both give central peak as well as high 
frequency response components of 0(kBT/EK)’ and higher. It is important to 
emphasise that ‘anharmonic spin-wave effects’ are not merely broadening mechanisms 
for other responses (e.g. linear multi-magnon mechanisms) but also include highly 
(space and time) coherent non-linear excitations (breathers) with both particle and 
oscillatory degrees of freedom. These observations apply equally well to 4’ cor- 
relations in the &four and similar models. We have already noted the conceptual and 
TIO similarity with A ( 4 )  = cos(4) in SG.  Correspondingly, two-phonon processes are 
very similar, and numerical evidence for long-lived classical breather-like modes in 
&four is strong (e.g. Aubry 1974, Kudryavtsev 1975, Klein et a1 1979, C Wingate and 
D Campbell 1979 unpublished) even in MD simulations (e.g. T R Koehler 1975 
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unpublished). Similarly, multi-phonon bound states viewed as quantum breather 
analogues are convincingly documented in the +four model (e.g. Dashen et a1 1975). 

At  elevated temperatures contributions from kinks can become substantial. (For 
instance, compare the contributions of exponential and O( TIEK)’ in (16), (21b).) 
However, elementary mode (kink, breather) interpretation then becomes less well 
defined and should not be represented in analytic form (such as -(kBT/E,)’ or 
-exp(-EK/kBT)), even if quantum effects are neglected. This observation is very 
relevant for recent experimental studies of CsNiF3 (Kjems and Steiner 1978, Kakurai et 
a1 1980). Bearing in mind the periodicity of spin coupling cos(@, - @i+l)  (Patk6s and 
Rujhn 1979, Riseborough and Trullinger 1980, § 2.1) the effective continuum SG 

creation energy is reduced and T-dependent. Most of the experiments have been at 
T = 10-12 K with kBT/Ekff) = 0.3-0.4. This is too high (Bishop 1979) for useful mode 
interpretation or simple analytic representations (e.g. Mikeska 1978). T < 9 K would 
be far more interesting theoretically from this point of view. (Higher and lower 
temperatures are certainly interesting but for different reasons, namely the approach to 
3D ordering (T-2 -65  K) and effects of a crossover to 1D isotropic Heisenberg 
behaviour (Bishop 1980b).) 

Finally we mention essential differences between CsNiF3 and TMMC. These are two 
quasi-1D magnets for which neutron scattering evidence is quoted in support of SG 

soliton excitations (Kjems and Steiner 1978, Boucher et a1 1980). TMMC is an 
antiferromagnet and solitons correspond only to 7~ (not 27r) rotations of a sub-lattice 
orientation angle. This leads only to a slightly different SG equation but with very 
striking physical consequences: CsNiF3 and TMMC are to be interpreted quite 
differently in terms of solitons (probing kink-insensitive and sensitive correlations 
respectively). We refer the reader to e.g. Mikeska (1978, 1980) for original details of 
derivations of the approximate SG description of in-plane motions in these two cases. 
Here we only emphasise that the correlations presently measured in CsNiF3 (Kjems and 
Steiner 1978) are for A ( @ ) = s i n @  and cosq5; and for TMMC (Boucher et a1 1980) 
A ( 4 )  = sin &$ and cos id. Dynamic correlations for A ( 4 )  = sin 4 and sin iq5 are quite 
similar, predominantly contributing to spin-wave modes with weakly-weighted central 
peaks at low q. More interesting are the contributions from correlations for A(@) = 
cos $4 and cos 4. We have carefully stressed the differences for these cases in this work. 
The implication is that anharmonic excitations play an important role for CsNiF3, 
masking the kink central peak contributions (at sufficiently low T )  and giving an 
additional non spin-wave high-frequency mode. Solitons enter the transfer integral 
expressions dominantly through eigenfunctions, as we have seen. By contrast, for 
TMMC the central peak is due predominantly to kinks (with different contributions from 
A ( 4 )  = sin :@ and (mostly) cos $$), and kinks enter the transfer integral results through 
eigenvalues directly. Breather contributions for cos $4 correlations are much weaker 
because those of amplitude S 2 x  are most important (rather than - 7~ for cos @ (Stoll et 
a1 1979)) but their density is then exponentially smaller than that of kinks. TMMC 
should therefore be a much more direct probe of kinkst but CsNiF3 is even more 
interesting (and complicated) theoretically since it might allow probing of the concep- 
tually more unfamiliar breather excitations and other anharmonicity effects. We must 
caution again, however, against the use of low-T asymptotic expansions beyond their 
temperature range of validity (Bishop 1979). Such expansions are useful guides to 
t Kinks should dominate correlations in out of easy-plane motions even for CsNiF3, since these are 
determined at sufficiently low T by correlations of A(q5) = 4, the in-plane SG variable (e.g. Schneider et a1 
1979). 
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mode interpretations as we have seen, but cannot replace numerical implementation of 
transfer integral procedures for static properties at currently typical experimental 
temperatures. Experiments at lower temperatures would be very useful, although these 
must be optimised with respect to consequent loss of scattering intensity. 

4. Summary 

In § 2 we surveyed the general structure of static correlation functions for the classical 
SG system (and related systems such as 4-four) deduced formally by the transfer 
integral operator (TIO) technique. We emphasised the striking differences between 
correlations of ‘kink-sensitive’ and ‘kink-insensitive’ functions, and studied how these 
details arise within the above formalism. For a kink-sensitive function (such as cos ;#J in 
2~-per iodic  S G )  an unambiguous correlation length proportional to the mean kink 
separation is easily identified. However, for a kink-insensitive function (such as cos 4 )  
the natural length scale is - kink width and we need to sum many terms in the TIO 

approach for an adequate representation even at low T :  anharmonic modes dominate. 
Thus care must be exercised with analytic implementations of the TIO. 

Similarly striking differences between these two types of function were noted in 0 3 
for corresponding dynamic correlation functions. Although fully rigorous theories are 
not available in general (certainly for Hamiltonian systems), we compared several 
suggested forms to check for their frequency-integrated consistency with the TIO. 

Finally, in 0 3 we cited two easy-plane magnetic chain systems as exemplars of these 
general remarks. Assuming (for purposes of illustration-see § 1) the basic validity of a 
classical, continuum SG description for in-plane spin dynamics, we noted that the 
ferromagnet CsNiF3 corresponds to a kink-insensitive case. Here anharmonic modes 
(breathers, multi-magnons) certainly play an important role, but simple mode inter- 
pretations must be cautioned against at currently studied temperatures (Kjems and 
Steiner 1978, Kakurai et a1 1980). By contrast the antiferromagnet TMMC belongs to 
the kink-sensitive class, and at low T a pure kink interpretation of the observed ‘central 
response‘ (Boucher eta1 1980) should be adequate (in the absence of other contributing 
mechanisms). Both of these materials are therefore potentially interesting for studying 
‘elementary’ SG excitations but they must be analysed quite differently, and experi- 
mental conditions chosen more carefully. 

5. Addendum 

Since submitting this work we have received preprints that include some related 
material by T Schneider and E Stoll, and by K Maki. These works are conveniently 
summarised by their authors in Schneider and Stoll 1981. Also, Leung and Hone 
(1980) have independently reached similar conclusions to ourself. 
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Appendix 

We illustrate a method of derivation for the intermediate structure factors F(q)= 
dwS(q, w )  (80 2,3) .  We use Goldstein's and Sip's asymptotic expansions (in our 

problem valid at low T << E K / k B )  for Mathieu eigenvalues and eigenfunctions, which 
are conveniently collated in Abramowitz and Stegun (1970). (See also Guyer and 
Miller 1978.) We shall want to illustrate the origins of results in the text, but also the 
limitations of this general approach which were emphasised there. (cf Apel et a1 1979.) 

The transfer integral effective SE (4) is equivalent to the standard Mathieu equation 
(Abramowitz and Stegun 1970): 

d2/dx2 + a - 2q cos(2x)$(x) = 0, (AI)  

where Vo in equation (4) can be omitted and 

We are concerned with expansions for q -+ -a( T + O+), and (in the cases below) only 
with the characteristic eigenfunctions, i.e. k = 0,; (cf notation of § 2), corresponding to 
band tops and bottoms. These are (real) linear combinations of Bloch functions. They 
can be even (band index n (8 2) even) or odd ( n  odd), and 77--periodic in x (k = 0) or 
2 ~ p e r i o d i c  in x (k = ;): 

~e2r(x, 4 )  (even, r-periodic) 

~ e 2 ~ + i ( ~ ,  4 )  (even, 277--periodic) 

Sezr+i(X, 4 )  (odd, 277--periodic) 

Sezr+z(X, 4 )  (odd, 77--periodic) 

(A3) 

( r=O,  1 , 2 , .  . .). It will also be convenient to use the relationships 

The normalisation used below is ce2(x) dx = Jiw se2(x) dx = 77-, with r1l2q+(+) + 
ce(x), se(x). 

Consider first the ground state ceo(x, q C O ) =  ceo(y, 141) ( y  3 ~ 1 2  -x). For lcos y l s  
2 1 1 4 1 ~  I - i / g 9  that is, y = 77-12, x = 0, we can use the expansion due to Sips (Abramowitz 
and Stegun 1970, $ 9  20.9.15-20), from which we find (141 >> 1) 

ce(x, q )= (77-12)~ /~ /q j~ /~ (1  +t$Jq/ - "2+ .  . . ) [ ~ ~ - ~ 1 q 1 - ~ / ~ ( ~ ~ + a 0 ~ ) + .  , .I 
where D,(a) = (-l), exp(~a2)(d"/da")(exp(-3a2)) and a = 2/q/ i /4  cos y .  Thus 

ceo(x, q )  --. (77-/2)i/41qli/8 exp(-lql'/2 sin2 x)  W a )  



896 A R Bishop 

Physically we expect the expansion near 4 = 0 (modulo 27r) to relate to major 
‘phonon’ order contributions. On the other hand we expect iJoo to be exponentially 
small (at low T) near 4 = 7r (modulo 27r) and to relate to soliton-order contributions. 
For 4 - T, that is y -0, we can use an expansion valid for (cos yI a21/21ql-1/4 
(Abramowitz and Stegun 1970, 90 20.9.1 1-14): 
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and 

$40(4,q) - .1r-’/~ce4(y = O,/ql)  cosh[~q/’/’(~-4)1.  (A121 
6-7 

Problems arise in finding accurate expressions for ce4(0,1q/) (and ce2,(0, q )  with n > 3). 
Only crude estimates are possible using tables and ce4(y = 0) is already rather large even 
for large /q1, 

We can also use the same expansions for the 2r-periodic (in x) Mathieu functions. 
For instance 

cel(x, -4) = sel(y, /q1) = (T/2)1/41q11i8 cos(x) exp(-q1/2 sin2 x) (A13a) 

(A13b) 

cel(x, -4) can be expressed for 4 - T as t1q/-1/2seb(0, 141) ~inh[q ’ /~ (T  - 4 ) ] ,  but we 
shall not pursue this further since the function vanishes for 4 = T :  solitons do not arise 
from the eigenfunctions in such cases, but from the eigenvalues (§ 2). We note that 
eigenvalue differences for the Mathieu equation follow from § 20.2.31 of Abramowitz 
and Stegun (1970), taking the forms ( l l c ,  d )  in the text. 

To illustrate uses of the above resultst consider correlations of A = cos 4 (§ 2). As 
T + O’, we approximate 

1/2 2 = (T/2)1/4/q11/8 exp(-$ql 4 ). 

271 1 1/2 

M Y ( T ) = ~  J dq5cei(&$)cosd= - 1 1/2 2 ( 2;7) q1/4 J cos 4 exp(-zq 4 d 4  
T o  

(A14) I 1 1/2  

+ 1 6 ( g )  q1l4 exp(-4q1l2) cos 4 cosh2[q1/2(4 - ;7)] d4,  

where we have used (A5) and (A7). The exponentially small-order term is retained 
even though it is dominated by phonon order terms (at low T ) ,  since the former exhibits 
‘soliton’ contributions. The integral ranges in (A14) are not easily prescribed 
rigorously. However, dt large q (low T )  we can reasonably extend the first integral 
range to (-CO, CO) and expand cos 4 (see below also). Then, we obtain ‘phonon’ order 
contributions. The second integral in definition (A14) is presumably a better represen- 
tation of higher-order phonon contributions. However, as in the expansions of 
eigenvalues (Abramowitz and Stegun 1970, § §  20.2.30,31), we can expect in addition 
non-perturbative pieces of exponentially small weight (at low T )  but representing 
interesting soliton effects (Currie et a1 1980). Physically these should correspond to the 
transition regions 4 - ;7 and noting ((A2)) that 4(q11/2 = PEK, we will simply evaluate 
the second integrand in (A14) at 4 = T. It will be appreciated that handling the ‘soliton’ 
piece in the present approach is not at all rigorous, but the result is suggestive. With the 
above approximations equation (A14) yields 

MTp“ ( T )  21 1 - 2(PE,)-’ + O(PEK)-~ - S ( ~ T ) - ~ / ~ ( P E K ) ~ / ~  exp(-PEK) (A15) 

i To simplify presentation we have used $ functions instead of 4 functions (see equation (4)) (recall that 
equation (4) is valid in the limit d >> I ) ,  although these corrections are ifiportant in typical numerical 
implementations. 
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or 
IMFs 1 2 =  1-4(PEK)--’+O(PEx)-2-4dnK(T)+O[d(PEK)-’nK1 

where we have used d n K ( T )  = 4 ( 2 ~ ) - - ’ / ~ ( / ? E ~ ) ~ / ~  exp(-PEK) (Currie et a1 1980), and 
d = co /wo .  The coefficient of the soliton-order term is uncertain in the above scheme 
but result (A15), describing the weight taken out of the Bragg peak (see § 2 and figure 
l), actually agrees very well with the form suggested by Mikeska (1978). 

Calculations of higher-order matrix elements proceed in the same way. (We shall 
restrict the discussion below to 2r-periodic (in 4)  Mathieu solutions appropriate to the 
periodic coupling spin problem ( 5  2.1). A further subset of matrix elements are finite if 
we admit 4r-periodic solutions also, i.e. for the literal SG ( l ) ,  ( 2 ) . )  From 0 2, (A8) and 
(A101 

lM‘1“sl2~8(PEK)-2fO(PEK)-3-4JZPEKdnK(T)+O(dnK(T)) .  (A17) 

Notice that, in the first integral in (A16), all terns  of 0(pEK)O cancel. This property can 
be shown to hold for all the matrix elements M p  if we expand integrands to sufficient 
order. Such a situation is expected from the behaviour of (see equation (10)) 

~ ‘ 0 ’ 2  = 1 2 X  

cez (i4) cos2 4 d4 
T o  

LI 1 - 4 ( p E ~ ) - ’ +  ~ ~ ( ~ E K ) - ~ + O ( P E K ) - ~ +  2 d n ~ + o ( ( p E ~ ) - l d n ~ ) .  (A18) 

In (18) we see that the ‘linear phonon’ order is already exhausted by IMP 1’. We also 
note the absence of terms of O(dpEKnK) in (A18), from which we imply that such terms 
in ZlM;y]2 will sum to zero (cf Ape1 et a1 1979). 

Calculation of matrix elements for cos $4 (equations (1 1)) proceeds similarly. (Here 
we shall admit coupling to 4v-periodic (in 4 )  Mathieu solutions also, having in mind 
antiferromagnet applications, such as to TMMC (Mikeska 1980), since the effective 
periodic SG potential is there (1 -cos 24)  (Mikeska 1980) and cos 4 correlations then 
correspond to the present calculation.) Since cel(x, -4) vanishes at x = ~ / 2  (4  = T ) ,  we 
do not look for soliton contributions. From § 2 and (A13) we estimate 

(2T)- i /2  114 d 4  e ~ p ( - 4 q ’ ’ ~ ~ $ ~ ) ( l  --$$’) 
m 

i, 

In this case soliton evidence appears through the dominant correlation length (from 
eigenvalue differences)-see equations (9) and (1 Id). The same situation occurs for 
correlations of sin (for the literal SG model where we include 4r-periodic Mathieu 
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solutions (in 4), cf 8 3), but it is essential to recognise the full periodicity of cel, cf 
equation (13a): 

1 27r 
My“ ( T )  = - I d 4  sin 4 ceo(i4)ce,(&b) 

T o  

1/2 2 dz z (1 - z2)’l2 exp(-2q z ) -- - 

i.e. 

Notice that while the correlation lengths for cos iqb and sin 4 are the same (and soliton 
dominated), the amplitude of correlations are very different (compare (A19) and 
(A20)) as we can expect physically. 

Finally we note that alternative approximations can be used to integrals occurring in 
the various matrix elements above. For example we can retain the ( 0 , 2 ~ )  integral 
range and assume that the validity of fully-periodic large-q approximations such as 
(A5a) can be extended over the whole range. Then 

277 

IMFs I = lo dqb cos q!~ exp(-2q’l2 sin2 iq5) 
1/2 1/4 = ( 2 ~ )  q ~ ~ ( q ” ~ )  exp(-q1’2), 

where I ,  is a modified Bessel function. Thus 

We see that differences occur only in numerical coefficients (compare equations (A15) 
and (A18) with (A21) and (A22) respectively), implying the need for consistent 
expansions for ce, se. This is evident, for instance, in the manipulations above (A5a)  if 
we seek to retain pre-exponential factors of 0(q-’I2). Thus coefficients in our various 
matrix element expressions should not all be exact. However, since our main interest is 
only to establish orders of ( P E K )  we will not pursue these corrections here. 
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